Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Anti-inflammatory drugs. IX. ${ }^{1}$ Hydrated diethylammonium [2-(2,6dichlorophenylamino)phenyl]acetate (HDEA•D• $\mathrm{H}_{2} \mathrm{O}$)

Carlo Castellari, ${ }^{\mathbf{a}}$ Fabio Comelli ${ }^{\text {b }}$ and Stefano Ottani ${ }^{\text {c }}$ *
${ }^{\text {an }}$ Dipartimento di Chimica 'G. Ciamician', Universitá di Bologna, Via Selmi 2, 40126 Bologna, Italy, ${ }^{\mathbf{b}}$ Centro Studi Fisica Macromolecole, c/o Dipartimento di Chimica 'G. Ciamician', Universitá di Bologna, Via Selmi 2, 40126 Bologna, Italy, and ${ }^{\text {c }}$ CNR - Istituto LAMEL, Via Gobetti 101, 40129 Bologna, Italy
Correspondence e-mail: ottani@lamel.bo.cnr.it

Received 19 September 2000
Accepted 20 December 2000

In the solid-state structure of the title compound, $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}^{+}$.$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{NO}_{2}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, the asymmetric unit contains one cation, one anion and a water molecule. A complex network of hydrogen bonds is present. A comparison is made with the structure of the anhydrous salt.

Comment

The present structural work on a diclofenac salt has been performed as part of a study on non-steroidal anti-inflammatory drugs (Castellari \& Sabatino, 1994, 1996; Castellari \& Ottani, 1995, 1996, 1997a,b, 1998; Castellari, Feroci \& Ottani, 1999; Castellari, Comelli \& Ottani, 1999). We have also redetermined the crystalline structure of diethylammonium [2-(2,6-dichlorophenylamino)phenyl]acetate (HDEA•D), which has been published previously (Pomes-Hernandez et al., 1997). Crystallographic data (excluding structure factors) for the structure of HDEA•D (Castellari et al., 2000) have been deposited with the Cambridge Structural Database (Allen \& Kennard, 1993).
 $\cdot \mathrm{H}_{2} \mathrm{O}$
(I)

A comparison between the structures of HDEA•D and HDEA•D• $\mathrm{H}_{2} \mathrm{O}$ allows the evaluation of the effects of the incorporation of a water molecule in the structure. Such a comparison has relevant pharmaceutical implications, since drug bio-availability is influenced by the presence of water. The asymmetric unit of the title compound, (I), is shown in

[^0]Fig. 1. The bond lengths and angles of the anion and cation are in good agreement with the corresponding values found in the anhydrous salt. However, the presence of the water molecule in the asymmetric unit influences the network of hydrogen bonds. In HDEA•D, two intramolecular hydrogen bonds and two normal intermolecular hydrogen bonds are detected between carboxylic acid groups and ammoniun ions, with the anions and cations linked in a chain running along [001]. The following intramolecular hydrogen-bond geometry was found: H1 . O1 2.08 (2), N1…O1 2.8834 (2) \AA and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ 153 (2) ${ }^{\circ}$; H1 • Cl1 2.60 (2), N1 \cdots Cl1 2.9811 (2) \AA and N1H1• $\cdot \mathrm{Cl} 1107(2)^{\circ}$. In contrast, in HDEA•D• $\mathrm{H}_{2} \mathrm{O}$ (see Table 2), there is only one normal (charge-assisted and resonanceassisted) hydrogen bond between cations and anions, but in this case the water molecule is involved in the hydrogen-bond network. The O3W atom acts as a donor towards both the carboxylate O atoms, O 1 and O 2 . As a result, in HDEA•D• $\mathrm{H}_{2} \mathrm{O}$, the polymeric structure consists of a twodimensional network with base vectors [010] and [100]. The diclofenac anion is stabilized, as usual, by two intramolecular hydrogen bonds between the amino group and the O 1 and Cl 1 atoms. The $\mathrm{C} 5-\mathrm{H} 4 \cdots \mathrm{Cl} 2$ bond is much weaker, but may still have some influence on the molecular packing.

Finally, in the anhydrous compound, the two torsion angles $\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 12$ are 16.7 (3) and $58.3(3)^{\circ}$, respectively. Thus, in HDEA•D• $\mathrm{H}_{2} \mathrm{O}$, the dihedral angle between the two phenyl rings, 72.4 (2) ${ }^{\circ}$, is larger than that found in the anhydrous form of the salt, $66.9(8)^{\circ}$. This work confirms the importance of solid-state characterization in pharmaceutical hydrates (Khankari \& Grant, 1995), since the anti-inflammatory power of the drug seems to depend strongly on the reciprocal orientation of the phenyl rings (Moser et al., 1990).

Figure 1
PLATON (Spek, 2001) diagram of HDEA•D• $\mathrm{H}_{2} \mathrm{O}$ showing the asymmetric unit. Dashed lined indicate hydrogen bonds. Non-H atoms are represented by displacement ellipsoids of 50% probability and H atoms by spheres of arbitrary size.

Experimental

Crystalline HDEA $\cdot \mathrm{D} \cdot \mathrm{H}_{2} \mathrm{O}$ was prepared by mixing equivalent molar amounts of diclofenac acid and diethylamine. Crystals were obtained from a water solution.

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}^{+} . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{NO}_{2}{ }^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=387.29$
Monoclinic, $P 2_{1} / a$
$a=11.7490$ (10) \AA
$b=12.2960(10) \AA$
$c=14.5910(10) \AA$
$\beta=107.544$ (3) ${ }^{\circ}$
$V=2009.9(3) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.280 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 5166 \\
& \quad \text { reflections } \\
& \theta=2.45-26.08^{\circ} \\
& \mu=0.341 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.5 \times 0.4 \times 0.3 \mathrm{~mm} \\
& \\
& \theta_{\max }=30.08^{\circ} \\
& h=-16 \rightarrow 16 \\
& k=-17 \rightarrow 17 \\
& l=-20 \rightarrow 20 \\
& 112 \text { standard reflections } \\
& \text { every } 20 \text { reflections } \\
& \text { intensity decay: }<2 \%
\end{aligned}
$$

Data collection
Bruker SMART 2000 CDD diffractometer
ω scans
26140 measured reflections
5884 independent reflections
3025 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.084$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.121$
$S=1.055$
5882 reflections
250 parameters

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0776 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=-0.001$
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}^{\text {max }}{ }^{-3}$
$\Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{N} 2-\mathrm{C} 17$	$1.485(3)$	$\mathrm{C} 14-\mathrm{O} 1$	$1.242(2)$
$\mathrm{N} 2-\mathrm{C} 15$	$1.502(3)$	$\mathrm{C} 14-\mathrm{O} 2$	$1.261(2)$
$\mathrm{O} 1-\mathrm{C} 14-\mathrm{O} 2$	$125.4(2)$		
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$16.8(3)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 12$	$63.4(2)$

The H atom bound to N 1 was located from a difference synthesis and was refined isotropically. The H atoms on the N 2 and $\mathrm{O} 3 W$ atoms were located experimentally and were refined isotropically with distance restraints. The starting positions of H atoms of the methyl groups were found from a difference electron-density synthesis. The remaining H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=$ $0.93-0.97 \AA$) and refined riding on their parent atoms.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$	$0.85(2)$	$2.69(2)$	$2.990(2)$	$102(2)$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	$0.85(2)$	$2.08(2)$	$2.853(2)$	$151(2)$
$\mathrm{O} 3 W-\mathrm{H} 1 W \cdots \mathrm{O} 1$	$0.78(2)$	$2.00(2)$	$2.773(2)$	$172(2)$
$\mathrm{O}_{2} W-\mathrm{H} 2 W \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.81(2)$	$1.98(2)$	$2.788(2)$	$175(3)$
$\mathrm{N} 2-\mathrm{H} 11 \cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.93(2)$	$1.79(2)$	$2.713(2)$	$170(2)$
$\mathrm{N} 2-\mathrm{H} 12 \cdots \mathrm{O} 3 W$	$0.95(2)$	$1.84(2)$	$2.786(2)$	$176(2)$
$\mathrm{C} 5-\mathrm{H} 4 \cdots \mathrm{Cl} 22^{\text {iii }}$	0.93	2.93	$3.851(2)$	173
Symmetry codes: (i) $1-x, 1-y,-z ;$ (ii) $\frac{1}{2}-x, y-\frac{1}{2},-z ;$ (iii) $2-x, 1-y, 1-z$.				

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: PLATON (Spek, 2001).

We thank Servizio Italiano di Diffusione Dati Cristallografici del CNR (Parma) for access to the Cambridge Structural Database.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1485). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Bruker (1998). SMART. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
Castellari, C., Comelli, F. \& Ottani, S. (1999). Acta Cryst. C55, 1054-1056.
Castellari, C., Comelli, F. \& Ottani, S. (2000). Private Communication (1078).
(Cambridge Structural Database deposition number: CCDC 150469.)
Castellari, C., Feroci, G. \& Ottani, S. (1999). Acta Cryst. C55, 907-910.
Castellari, C. \& Ottani, S. (1995). Acta Cryst. C51, 2612-2615.
Castellari, C. \& Ottani, S. (1996). Acta Cryst. C52, 2619-2622.
Castellari, C. \& Ottani, S. (1997a). Acta Cryst. C53, 482-486.
Castellari, C. \& Ottani, S. (1997b). Acta Cryst. C53, 794-797.
Castellari, C. \& Ottani, S. (1998). Acta Cryst. C54, 415-417.
Castellari, C. \& Sabatino, P. (1994). Acta Cryst. C50, 1723-1726.
Castellari, C. \& Sabatino, P. (1996). Acta Cryst. C52, 1708-1712.
Khankari, R. \& Grant, D. (1995). Thermochim. Acta, 248, 61-79.
Moser, P., Sallmann, A. \& Wiesemberg, I. (1990). J. Med. Chem. 33, 2358-2367.
Pomes-Hernandez, R., Duque-Rodriguez, J., Novoa-de-Armas, H. \& Toscano,
R. A. (1997). Z. Kristallogr. 212, 61-62.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany. Spek, A. L. (2001). PLATON. Version of January 2001. University of Utrecht, The Netherlands.

[^0]: ${ }^{1}$ Part VIII: Castellari, Comelli \& Ottani (1999).

